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6 Dealing with variability

Variability in a set of data relates to how spread out or how close together the values are 
(the distribution of values). Although variability can arise for various reasons, the questions 
of interest, and the mathematical techniques used to answer them, are similar. These 
questions are:

• How big is a typical value?

• How much do the values vary?

• Are there any unusual values?

6.1 Where does variability come from?
A familiar example of variability is the way that people are different to each other. For 
example, some people run faster than others. In a 100 metres race, we would not expect all 
the runners to get exactly the same time – there would be a range of values. For a random 
sample of people, there would be lot of variability, i.e. a wide spread of values. For a race 
with elite runners, the times would be faster but also much closer to each other, and thus 
less variability.

A very different example is rolling a marble down a slope. If all the conditions were kept 
exactly the same, using identical marbles down identical slopes, then in principle we might 
expect to get exactly the same time for every run. However, in practice, it is likely that there 
will be some variability in the values. This variability does not result from differences between 
what is being measured, but in the act of measurement itself. Repeated measurements of the 
same thing may be different from each other because of measurement uncertainty.

The distinction between these is very important to understand. For all measurements 
there is uncertainty in the measured values, so this may always be a source of variability in 
repeated measurements. Variability can also arise from differences between the individuals in a 
population. Examples of these two sources of variability are:

• Measurement uncertainty (for repeated measurements of the same thing)
 time of travel of a marble rolling down a slope
 height of a bouncing ball dropped from a particular height
 time for a paper parachute to fall
 volume of a solution used in a titration.

Key words: variability, random error, true value, uncertainty, population, sample, 
distribution, histogram, batch, class interval, frequency, average, mean, arithmetic 
mean, median, mode, spread, range, quartile, interquartile range, box plot, outlier, 
anomaly, probability, independent events, combined events, risk.
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• Differences between individuals (for measurements of a sample of different but related 
things)

 time to run 100 metres for different people
 height of pupils in a year group
 number of spines on holly leaves
 air pollution levels in different locations.

Understanding the differences between these two sources of variability is important, for 
example in appreciating the difference between line graphs and scatter graphs (see Section 3.6 
Line graphs and scatter graphs: two related quantities on page 29). For ‘line graph’ type data, 
the data points may not all lie on a fitted line because of measurement uncertainty; for ‘scatter 
graph’ type data, a fitted line may not pass at all close to many of the data points because of 
differences between individuals.

6.2 Variability and measurement uncertainty
The reason for making repeated measurements in an experiment is because of random 

error. The experimental design should aim to minimise these errors but they cannot be 
eliminated. Thus any single measurement may be different from the true value, and repeated 
measurements may be different from each other. This variability is called the uncertainty. It 
depends both on the nature of the measuring instrument and on what is being measured. 

For example, when using a ruler divided into millimetres, it is not difficult to measure the 
width of a sheet of paper to the nearest millimetre. Using a ruler divided into centimetres 
makes this harder. An estimate can be made by eye to the nearest millimetre, but with 
greater uncertainty than using the first ruler. The second ruler has a lower resolution, and the 
uncertainty is due to the nature of the measuring instrument.

By contrast, the uncertainty in measuring by eye the height to which a ball bounces is related 
more to the nature of what is being measured than to the measuring instrument. One can use 
a metre rule divided into millimetres but the movement of the ball means that it is really only 
possible to measure its position to the nearest centimetre.

A metre rule is an example of an analogue instrument, for which the resolution is related to 
the size of the scale divisions. On a digital instrument, the resolution is determined by the 
digits shown on the display.

For example, many digital thermometers read to the nearest 0.1 °C – this is its resolution. 
If the temperature of some warm water is measured as 32.6 °C then this suggests that the 
true value lies closer to this value than to 32.5 °C or 32.7 °C. However, if a second digital 
thermometer is used to measure the same temperature, it may display 32.9 °C. It is quite 
usual for different measuring instruments to give different measurements for the same 
thing. How close a reading is to the true value is related to the accuracy of the instrument. 
Thus the uncertainty in a measurement may be related to the instrument’s accuracy and not 
its resolution.

The uncertainty in using a digital instrument, as for an analogue instrument, may also be 
related to the nature of what is being measured. If the temperature of the system being 
investigated changes very rapidly then it may only be possible to make measurements by eye 
to the nearest 1 °C even though the thermometer reads to the nearest 0.1 °C.

In 11–16 science, the uncertainty of a measurement relates to the number of significant 
figures in the value. For example, giving the mass of an object as 12 g suggests a greater 
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uncertainty in its value than if it is given as 12.39 g. The number of significant figures is a 
reflection of the precision of the measurement. (See Section 1.2 Measurement, resolution and 
significant figures on page 9.)

In scientific practice, and in post-16 science, measurement uncertainty is indicated explicitly 
using the ‘ ’ symbol to show the range within which the true value is likely to lie. For 
example, the manufacturers of a digital thermometer may state that its accuracy is  0.3 °C, 
so a measurement with this thermometer might be written as 32.6 °C  0.3 °C. This means 
that the true value is likely to be found in the range 32.3 °C to 32.9 °C. Note that it does not 
mean that the true value is definitely in this range but that there is a good probability that it is 
(often the probability value used is 95%).

It is important to note that the accuracy of the instrument (  0.3 °C) is not the same as its 
resolution (0.1 °C). They are, however, related through the choices made in the design of the 
instrument. It would be possible to make a digital thermometer with an accuracy of  0.3 °C 
but with a digital display that could show values to the nearest 0.001 °C. There would be no 
point to this and it would be confusing. A display that reads to the nearest 0.1 °C is adequate 
for the accuracy of this particular thermometer.

In summary, measurement uncertainty depends on the resolution of the instrument, the 
accuracy of the instrument and on the nature of what is being measured. It is a complex 
and subtle area, where there are no simple rules about rounding and significant figures for 
measured and calculated values. Attempting to invent artificial rules for 11–16 science is 
neither desirable nor possible. To develop pupils’ understanding, it is better if they think 
about the nature of each situation and make sensible judgements.

Finding the mean of a set of repeated measurements can reduce the uncertainty and give a 
value that is more likely to be closer to the true value than any single measurement.

In secondary school science experiments, a common rule of thumb is to take three repeated 
measurements (unless there is poor agreement between the results, suggesting that further 
measurement is needed). In scientific work, there is nothing ‘special’ about three repeated 
measurements. The choice of how many repeated measurements to take depends on their 
variability. School activities are usually designed so that random errors are relatively small. 
Taking more than three repeated measurements is time consuming, while with only two 
measurements there is a chance that the values may be in agreement but both incorrect. 
Three measurements is a reasonable compromise for most contexts in school science.

For example, the travel time of a marble rolling down a slope could be measured using a 
stopwatch. These times would be subject to random errors; for example, the watch might not 
be started and stopped at exactly the same point on each run.

If the measured times are 4.37 s, 4.72 s and 4.48 s then an answer to the question ‘How big 
is a typical value?’ can be found by calculating the mean. Dividing the sum of the values 
by the number of values using a typical calculator produces a value that may be displayed as 
4.523333333. Rounding this value to three significant figures (the same as for the measured 
times) gives 4.52 s. The stopwatch reads to the nearest 0.01 s but the spread in the values 
suggests that the random errors in timing by hand are somewhat larger than this. In this case, 
it may make more sense to round to only two significant figures, i.e. 4.5 s. Thus, for these 
data, the value of 4.5 s is our best guess of the true value of the travel time. (For more about 
means and significant figures, see Section 2.4 Calculating means on page 18.)
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For further information about the measurement uncertainty, see the ASE/Nuffield 
publication The Language of Measurement.

6.3 Variability in a population of individuals
Many biological experiments involve making measurements on a sample of individuals in 
a population. Here, the variability is not due to random error but because of differences 
between the individuals in the sample. The variability relates to what is of interest about 
the sample itself and not about the way the values are measured. (For further details about 
sampling, see Section 8.2 Populations and samples on page 76.)

For example, suppose a group of four girls aged 15 run a 100 metres race. Their times are 
measured as 14.5 s, 13.9 s, 15.3 s and 14.8 s. Although there will be random errors in these 
measurements, the variability here is caused mainly by differences in the individuals themselves. 
Some girls can run faster than others.

An answer to the question ‘How big is a typical value?’ can again be found by calculating the 
mean – for these data it is 14.6 s. If the girls are reasonably representative of their age group 
then this value is our best guess of the typical running time for 100 metres of a 15-year-old 
girl. Of course, this is a small sample and the girls might not be at all representative of the 
population. So, our guess might not in fact be a good guess for the typical running time but, 
in the absence of any other data, this is our best guess.

Not all populations of individuals are biological. In manufacturing, the objects being made 
can be thought of as populations. For example, in making pistons for a particular car engine, 
the sizes of each should in principle be identical. In practice, there will be some variability 
in this ‘population’, but the aim of the production process is to keep this variability within 
acceptable limits.

With only three or four individuals, taking a mean is about as much as can be done. 
However, experiments and surveys that look at samples of populations often collect data 
on relatively large numbers of individuals. With larger samples, there is more that can be 
explored, and it is useful to have techniques for seeing patterns in large data sets.

6.4 Displaying larger sets of values
A useful way of displaying the distribution of a larger number of values is to draw a 
histogram. For example, the first column in Figure 6.1 shows a set of measurements of 
the heights of a sample of 12- to 13-year-old pupils (in cm). A data set such as this, which 
contains a set of values related to a single quantity, is sometimes referred to as a batch of data. 
Just looking at the raw data gives a sense of how big the values are, but organising the data 
enables more to be seen.

The next step here is to order the raw data in order of size. Figure 6.1b shows a column of 
values going from the highest down to the lowest. (A quick method for ordering sets of values 
is described in Section 8.3 Analysing a batch of data on page 77.) It is now easier to get a 
sense by eye of the variation in these values.
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Figure 6.1 Heights of pupils in a sample (cm)
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In order to draw a histogram, the next step is to split the set of values into a number of 
groups or ‘classes’ – the class interval is the range of values within each class. The choice of 
class interval should result in a sensible number of classes, neither too few nor too many. A 
convenient choice is 130–139 cm, 140–149 cm, 150–159 cm and 160–169 cm. 

The data values in each class are counted to give the total number or frequency for each class 
as shown in Figure 6.1c. For example, there are four data values in the class interval 160–
169 cm (163, 163, 164 and 168), so it has a frequency of 4.

Note that discrete data can also be put into groups like this (for an example, see Section 3.2 
Using tables to process data on page 24, which discusses the construction of a frequency 
table from discrete data).

Figure 6.1d shows a histogram drawn from these values. The height of each bar shows the 
frequency of values (i.e. the number of values) within each class interval (i.e. the range of 
values of the bar).

This set of data has a fairly small number of values. With a larger number of values, a 
smaller class interval could be chosen (say 5 cm instead of 10 cm), so that each bar represents 
a narrower range of values. The histogram would then have more bars and give a better 
indication of the distribution of values. With only a small number of values, this would not 
be a good idea since there would not be many values in each of the classes. Choosing an 
appropriate width for the class interval is entirely a matter of judgement.

It is important not to confuse a histogram with a bar chart, since they are very different. 
A histogram shows the frequency distribution of a set of values, and the horizontal axis 
represents a quantitative (continuous or discrete) variable. To indicate this, the columns 
are drawn touching each other. By contrast, in a bar chart the horizontal axis represents 
a qualitative (categorical) variable and the columns are drawn with spaces in between 



The Language of Mathematics in Science: A Guide for Teachers of 11–16 Science 55

Chapter 6: Dealing with variability

(see Section 3.4 Charts showing a quantity categorised by one factor on page 26 for 
further details).

Note that there are differences between mathematics and science in the meaning of 
‘histogram’. For the histogram in Figure 6.1, the width of each column (the class interval) 
has been chosen to be the same. This is the usual practice in scientific literature and in 
school science.

In mathematics, pupils learn to draw histograms in which the class intervals (and hence the 
width of the columns) are different from each other; the vertical axis represents ‘frequency 
density’ and not frequency. Frequency density is calculated by dividing the frequency of 
the class interval by the width of the class interval, and so the frequency for each class is 
represented by the area of the column and not by its height. 

If all the columns are the same width then the shape of the display is the same regardless of 
whether frequency density or frequency is plotted. 

In science, a ‘histogram’ is generally taken to mean a plot of frequency, with all the class 
intervals being the same width. Since this is what pupils will encounter in science textbooks, 
it is this meaning that is used in this publication. Teachers and pupils need to be aware of this 
difference in the meaning of histogram in mathematics and science.

6.5 How big is a typical value?
Just by looking at the values for the example above, it is easy to see that a typical value is 
somewhere between 140 cm and 160 cm. Mathematically, three measures may be used to 
express this idea of a ‘typical value’ or ‘central tendency’ – mean, median and mode:

• Mean (strictly speaking the arithmetic mean): For this set of values, the sum of the 
heights is 2728 cm and the number of values is 18, so the mean is 151.6 cm. One 
problem with a mean is that it can be affected by outliers (unusually high or low 
values), since it uses all values as part of the calculation.

• Median: This is the middle value of a distribution, and can easily be found once the 
values have been ordered. If there is an even number of values (as here), the median is 
the mean of the middle two: these are 149 cm and 151 cm, so the median is 150 cm. 

• Mode: In a distribution of discrete values, the mode is the most common value. 
Some sets of data may have more than one mode. For the data shown in Figure 6.1 
(continuous data, not discrete), the interval with the largest number of values (in this 
case 140–149 cm) is the modal interval.

The mean, the median and the mode are all ways of expressing an average. In everyday 
language, the word ‘average’ is generally used as an alternative term for ‘arithmetic mean’. 
In science and mathematics, this usage should be avoided, since an ‘average’ refers to any 
measure of a typical value of a distribution.

In summary, three ways of expressing an average for these data are:

• mean   151.6 cm

• median   150 cm

• modal interval   140–149 cm.

The mean is the most familiar and the one most commonly used in school science. An 
advantage of a median is that, unlike a mean, its value is not affected by outliers; a median 
can also be quicker to find than a mean.
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When talking about an average as being a ‘typical value’, it is important to emphasise that it 
does not mean ‘the most common value’. For example, saying that a typical value for these 
data is 150 cm does not mean that most of these pupils are 150 cm tall. Instead, think of it 
as just meaning ‘roughly how big’. For an alien who did not know whether a 12- to 13-year-
old was nearer 10 nanometres or 10 metres tall, saying that a ‘typical value’ is 150 cm gives a 
good sense of size.

6.6 How much do the values vary?
In addition to having a way of indicating a ‘typical value’ for a set of data, it is useful to have 
a measure of how spread out the values are. Two commonly used measures of spread are the 
range and the interquartile range.

The range is the difference between the highest and lowest values. For these data, the range 
is 31 cm (168 cm 137 cm). Note that in school science, the ‘range’ of a set of data is 
generally used to indicate the lowest and highest values (e.g. the range is ‘from 137 cm to 
168 cm’). Since this meaning differs from the one used in mathematics and statistics, pupils 
should be told explicitly what they should do if they are asked to find the range of a set of 
data (e.g. ‘write down the highest and lowest values’ or ‘calculate the difference between the 
highest and lowest values’). Although it is easy to calculate, a problem in using the range is 
that it is affected by extreme values at the high end or low end of the distribution (outliers).

Figure 6.2 shows another way of representing a distribution visually. It is called a box plot, 
and these types of display are very effective at showing the variation in values. To construct 
a box plot, the first step is to identify the highest and lowest values, and the median. This is 
shown in Figure 6.2a.

Figure 6.2 A box plot is another way of displaying a distribution of values

(a) Splitting the data into 

      halves

(b) Splitting the data into quarters (c) Box plot showing summary values
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Finding the median can be thought of as splitting the data set into two halves – the median 
is the value where the data set is split. The next step is to split each of these two halves again 
in halves. Thus, the data set has now been split into four quarters, and this is represented 
in Figure 6.2b. The values where the upper and lower halves of the data are split are called 
the quartiles.

The upper quartile is the middle of the top half of the data (in this case, the middle of the 
largest nine values is 158 cm) and the lower quartile is the middle of the bottom half of 
the data (in this case, 144 cm). These five ‘summary’ values (highest value, upper quartile, 
median, lower quartile and lowest value) can now be used to draw the box plot shown in 
Figure 6.2c. (See Section 8.3 Analysing a batch of data on page 77 for further details of how 
to draw a box plot.)

The central box of a box plot is a better indication of the spread of values than the range, 
since it is not distorted by outliers. It represents the interquartile range, which is the 
difference between the upper quartile and the lower quartile. Here, its value is 14 cm 
(158 cm 144 cm).

The line extending above the box represents the upper quarter of the values and the line 
below represents the lower quarter of the values. Thus, the central box represents one half of 
the values in the distribution: it indicates that the heights of half of the pupils in this sample 
lie between 144 cm and 158 cm.

Measures of spread are especially useful when comparing two or more data sets, and this is 
discussed in Section 8.5 Comparing batches of data on page 81.

6.7 Comparing shapes of distributions
Box plots and histograms are both helpful ways of displaying batches of data. The particular 
strength of the box plot is that when a number of them are drawn side-by-side, the eye 
can quickly scan across and compare the medians and spreads of different distributions. A 
histogram shows more detail about a distribution than the five summary values of a box plot 
but histograms are not as easy to interpret as box plots when comparing two or more batches 
of data.

Some distributions may be fairly symmetrical while others may be skewed – with values 
spread out on one side of the middle more than the other. The histogram in Figure 6.3a 
represents a fairly symmetrical distribution. This kind of distribution is what one might 
expect when measuring the heights of a sample of pupils of the same age. By contrast, the 
histogram in Figure 6.3b represents a skewed distribution, with values clustered more at the 
upper end.

This kind of distribution, with values skewed towards the right, is typical when there is some 
kind of ‘ceiling’. A distribution of the heights of a random sample of people from babies 
to adults would have a ‘ceiling’ effect: adults tend not to go over a certain height, while the 
heights of babies and children would be spread out over lower values.

The box plots for these two distributions are shown in Figure 6.3c. The shape of the box 
plot on the left indicates that it is a roughly symmetrical distribution, since the median is 
approximately in the middle of the box and the lengths of the lines above and below the box 
are about equal. The box plot on the right clearly shows a skewed distribution, with the lower 
part being ‘stretched out’ and the upper part being ‘squashed together’.
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Figure 6.3 Comparing distributions

(a) Histogram representing a fairly symmetrical 

          distribution

(c) Using box plots to compare the two distributions

F
re

q
u
e
n
c
y
 

Variable

V
a
ri
a
b

le
 

Mean 

Mean 

(b) Histogram representing a skewed distribution

F
re

q
u
e
n
c
y
 

Variable 

It may seem intuitively obvious that, in any distribution, roughly half of the values will be 
below average, and half above average. However, this is not always the case. If the median is 
taken as the average then it will be true: the median splits the set of data into two, so there 
are equal numbers of values above and below the median. However, if the arithmetic mean is 
taken as the average then the number of values above and below the mean will depend on the 
shape of the distribution.

This is illustrated by the box plots in Figure 6.3c. For the first box plot, the distribution is 
fairly symmetrical and the mean is approximately the same as the median: the numbers of 
values above and below the mean are about the same. However, for the second box plot, 
the distribution is positively skewed and the value of the mean lies below the median: for this 
distribution there are more values above the mean than below it. 

6.8 Are there any unusual values?
An outlier is a value in a set of data that seems to be unusually large or unusually small in 
comparison with most of the other values. For repeated measurements, an outlier may be the 
result of a mistake and is often disregarded. For measurements on a sample of individuals, an 
outlier may indicate a value that is of particular interest. There are no hard-and-fast rules for 
how to identify and deal with outliers – it will depend on the context.
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Note that ‘outlier’ is a statistical term that can be used to describe unusual values in any 
kind of distribution. The term anomaly (or ‘anomalous value’) is also used in school science, 
though usually in the context of repeated measurements rather than for individuals in a 
population. For example, a bowhead whale has a particularly long lifespan for a mammal but 
it is not generally regarded as being an ‘anomaly’ (see Section 8.3 Analysing a batch of data on 
page 77).

The heights of pupils in the sample shown in Figure 6.1 ranged from 137 cm to 168 cm. 
Suppose another value was added to this – a very low one of 48 cm. The value stands out 
as very different from the rest. One possibility is that it is a mistake – perhaps the actual 
value was 148 cm and it was written down incorrectly. If a value is a mistake then it should 
be corrected or removed. Another possibility is that the value is indeed correct but unusual. 
In this particular example, it is unlikely that there would be a pupil of this height but, 
in other situations, it is quite possible that there may be an unusual value that genuinely 
represents a special case. Identifying and displaying such outliers can be useful as there can be 
interesting and important reasons why they are very different from the rest of the values. (See 
Section 8.3 Analysing a batch of data on page 77 for further details.)

6.9 Basic ideas in probability
A deeper understanding of variability can be gained by using ideas about probability, since 
randomness is an underlying cause of the variation. Probability is an important topic of 
study in 11–16 mathematics, though in science at this level it appears very little, except for 
some basic ideas related to genetics. However, in science itself, probabilistic ideas have a very 
significant place – both in understanding a wide variety of phenomena and in the design of 
experiments and handling measurement uncertainty. Pupils will meet these ideas much more 
in post-16 science.

A simple example of something that produces random outcomes is tossing a coin. The 
outcome cannot be predicted but there is an equal chance of getting a head or a tail. This is 
described as saying that the probability of getting the head is ½, 0.5 or 50%. The probability 
of getting a tail is the same. The sum of these two probabilities (½  ½) is equal to 1. A 
probability of 1 means that something is certain to happen, i.e. the coin will either land as a 
head or as a tail (ignoring the very unlikely outcome that it lands exactly on its edge).

If a coin is tossed and a head is obtained then the probabilities of getting a head or a tail 
on the second toss are still the same. The outcome of the second throw is not affected by 
the outcome of the first throw. Each coin toss is therefore called an independent event. 
(A dependent event is one whose probability is affected by the outcome of another event.) 
Many people do not find this idea at all intuitive and believe that if a coin is tossed five times 
and it lands as heads every time then the probability of getting a tail the next time will be 
much higher. However, since these are independent events, the probability of a head is still ½ 
(assuming it is a ‘fair’ coin).

If you toss a coin a very large number of times (say a billion times) then you would expect 
the proportions of heads and tails to be very close to 50% of each. However, if you only toss 
a coin 10 times (a small sample size), you might get 5 of each, but it is also quite likely you 
will get a different proportion, such as 4 heads and 6 tails. The larger the sample of tosses, the 
more likely you are to get closer to half being heads and half being tails.

If a coin is tossed twice, there are a total of four possible outcomes: HH, HT, TH and TT. 
These are shown in Figure 6.4 (this is known as a sample space).
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Figure 6.4 Outcomes of tossing a coin twice
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A pair of coin tosses, consisting of two separate events, is an example of a combined event. 
The probability of a combined event can be calculated by multiplying together each of the 
probabilities of the separate events but only if these are independent events. So, for a pair 
of coin tosses, the probability of getting a head on the first toss is ½ and the probability 
of getting a head on the second toss is also ½. The probability of throwing two heads 
is therefore ½  ½ ¼. The probabilities for each of the four outcomes are shown in 
Figure 6.5a. All of them are ¼. This means that in a very large number of coin tosses, you 
would expect there to be 25% of each of the four combinations, as shown in Figure 6.5b.

Figure 6.5 Probabilities and percentage frequencies
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For a smaller number of pairs of coin tosses, you would not expect to get 25% of each 
combination. Figure 6.5c shows a possible outcome for 100 pairs of coin tosses. As the 
number of pairs of tosses increases, the more likely it is that the proportions will approach 
25% of each.

These ideas about the outcomes of coin tossing are a direct analogy for the way that the 
outcomes of genetic crosses are predicted (and as represented using a Punnett square). The 
outcome of a single coin toss corresponds to a particular allele, while the pair of coin tosses 
corresponds to the pair of alleles inherited from each parent.

So far, we have looked at the outcomes of a single coin toss and of a pair of coin tosses. This 
can be continued, looking at the probabilities of each of the outcomes for three, four or more 
sets of coin tosses. The mathematical calculations get rather more difficult but the principle is 
just the same. Figure 6.6 shows the probabilities of possible outcomes for various numbers of 
coin tosses, expressed in terms of ‘number of heads’.

For example, Figure 6.6a shows that, for a single coin toss, there are two outcomes: 0 heads 
(i.e. a tail) or 1 head. The probability of each is 0.5. 

Figure 6.6b shows that, for two coin tosses, there are three outcomes: 0 heads (i.e. TT), 1 head 
(i.e. HT, TH) and 2 heads (HH). These probabilities are 0.25, 0.5 and 0.25, respectively.

Figure 6.6c shows the outcomes for three coin tosses and Figure 6.6d shows the outcomes for 
four coin tosses. For sets of four coin tosses, the most likely outcome is to get 2 heads (and 
thus 2 tails). Much less likely, though still quite possible, is to get 0 heads or 4 heads.
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Figure 6.6 Probabilities of outcomes from various numbers of coin tosses

(a) One coin toss (b) Two coin tosses (c) Three coin tosses (d) Four coin tosses
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We can carry on looking at larger and larger numbers of coin tosses. Figure 6.7 shows the 
probabilities of all the outcomes for sets of 10 coin tosses. It shows that 5 heads (and thus 
5 tails) is the most likely but several other combinations can occur quite often; for example, 
getting 3 heads has a probability of over 0.1. The probability of getting 9 or 10 heads in 
10 throws, however, is very low.

Figure 6.7 Probabilities of outcomes from 10 coin tosses

(a) A bar chart (b) Drawing a curve through the values
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With this larger number of values, it is interesting to see the shape of the graph obtained by 
drawing a curve through these data points (Figure 6.7b). This shows the classic ‘bell-shaped’ 
curve – the sort of distribution that you get, for example, by measuring the heights of people 
in a population. Most people are of middling height with smaller numbers of very short or 
very tall people.

The shapes are similar for the same underlying reason. The heights of people, like the 
outcomes of coin tossing, are determined by a combination of many random events. The 
same is true for the variability due to measurement uncertainty (e.g. repeated measurements 
of the time for a marble to run down a slope) and for the natural variability in the 
characteristics of any population (e.g. the times for different people to run a 100 m race).

6.10 Estimating risks
In everyday language, the words ‘hazard’ and ‘risk’ are used more or less interchangeably with 
the word ‘danger’. However, they are also technical terms with precise meanings. A hazard is 
something that is potentially harmful to people, property or the environment. A risk relates 
to the probability of harm occurring when exposed to a hazard. For example, a river near a 
house is a hazard because it can potentially cause flooding. The risk of the land around the 
house being flooded by the river might be assessed as a 1% annual probability.
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There are essentially two ways in which risks can be assessed. Thinking about coin tosses is a 
simple way to illustrate this. If we want to know what the ‘risk’ is of getting two heads when 
we toss two coins, there are two ways of working this out.

One method is to collect a lot of data, by noting the outcomes of many pairs of coin tosses. 
The more coin tosses we do, the more likely the estimate is to be accurate. With a very large 
number of pairs of coin tosses, the ‘risk’ of getting two heads is found to be ¼.

The other method is to work out the probability from what we know about the behaviour of 
the coins. For each coin toss, the probability of getting a head is ½. Thus the ‘risk’ of getting 
two heads is ½  ½ ¼.

In the real word, both of these methods are used to calculate risks. When a lot of data is 
available, the first method can be used. The risk of getting lung cancer from smoking, or 
the risk of certain injuries in road accidents, can be found by analysing statistics that are 
routinely collected. 

Other risks relate to events that happen rarely or have never happened. Calculating the risks 
of damage to a nuclear power station due to an earthquake, or the risks to human health on 
a mission to Mars, cannot be calculated by analysing large data sets of previous cases. Instead, 
they are calculated by combining the estimated probabilities of the events that lead to the 
outcomes being assessed.

Estimating risks in the real world is of course much harder than working out probabilities 
in coin tossing. For example, despite having a great deal of data about people’s health and 
behaviour, it took a long time and much analysis before the link between smoking and lung 
cancer was established. In the case of nuclear power stations, different people may make 
different estimates of risk because they make different assumptions about the contributions to 
the risk.

6.11 Interpreting reports about risk
Everything that we do entails risk. Running, walking or any kind of physical activity involve 
the risk of injury, while lack of exercise is a risk to health. In order to make decisions, one 
needs to weigh up the sizes of different risks. There are frequent media reports concerning 
risk, such as the impact of new drugs or the effects of diet on health. However, people may 
have difficulties in understanding the figures, and the studies are often reported in a way 
that makes them hard to interpret. This can have a serious effect on the ways that risks 
are perceived.

For example, here are some headlines about cancer risks:

• ‘CT scans in childhood can triple the chance of developing brain cancer’

• ‘One drink a day increases breast cancer risk by 5%’.

The figures themselves may not be easy for many people to compare because they are 
expressed in different ways. A ‘tripling’ of a risk can re-expressed as a ‘200% increase’ 
(conceptually not a simple calculation) and, put this way, perhaps it sounds more alarming 
(after all, ‘200’ is a bigger number than ‘3’). When both figures are expressed as percentages, 
they can be compared more easily:

• ‘CT scans in childhood can increase the risk of developing brain cancer by 200%’

• ‘One drink a day increases breast cancer risk by 5%’.
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A casual reading of these figures might suggest that childhood CT scans are a much bigger 
cancer risk than having one drink a day (40 times bigger).

However, the problem is that the figures in these headlines are referring to relative risk and 
not absolute risk. Your risk of being hit by a meteorite is extremely small indeed (an absolute 
risk); if for some reason this risk increases 100 times (a relative risk), this would still represent 
a very small risk of being hit. So, it is hard to interpret a relative risk without knowing the 
size of the underlying absolute risk.

For the two examples above, the relevant absolute risks are:

• about 1 in 10 000 children aged 0–9 develop brain tumours or leukaemia

• about 11% of women who do not drink develop breast cancers.

Again, some care is needed in comparing these figures for the absolute risk. Some people 
think that ‘1 in 10 000’ is a bigger risk than ‘1 in 100’ (since 10 000 is a big number), or 
that ‘1 in 10’ is smaller than ‘5%’. Re-expressing the second risk allows the two risks to be 
compared more easily:

• about 1 in 10 000 children aged 0–9 develop brain tumours or leukaemia

• about 1100 in 10 000 women who do not drink develop breast cancers.

The story presented here has been simplified, but the principle should be clear to see. The 
absolute risk in the second example is far, far bigger than the first, even though the relative risk 
is lower. Using all the available data and some intricate calculations, studies have worked out 
the increase in numbers of cases:

• an extra two cases of cancer for every 10 000 children given CT scans

• an extra 60 cases of breast cancer for every 10 000 women who regularly have a drink.

The ‘tripling’ of cancer due to CT scans now seems to be less alarming than the headline may 
have suggested to many people. Although the relative risk is very high, the numbers affected 
are fairly small because of the low underlying absolute risk.


