Description of the site:

Width:

Depth														

Depth														

Depth														

Wetted perimeter:

Velocity:

Position	Time			Total	Average time (total/3)
	1	2	3		
Near					
Midstream					
Far					

Bedload:

Distance from near bank	Pebble Size						
	1	2	3	4	5		Total
Average							

Calculations:

Cross-sectional Area:
A $=$ Width x Mean Depth

Wetted perimeter:
The total length of the bed and bank sides that is in contact with the water in the channel.

Hydraulic Radius (Efficiency):
The ratio between the area of the cross-section of the river channel and the length of its wetted perimeter. The greater the Hydraulic radius the more efficient the river.
$H R=\frac{\text { Cross sectional area }}{\text { Wetted perimeter }}$

Discharge:

The amount of water originating as precipitation that reaches the channel by surface runoff, throughflow and baseflow. Velocity of the river V, (m per second,), multiplied by the cross-sectional area of the river, A , (sq m). This gives the volume in $\mathrm{cu} \mathrm{m} / \mathrm{sec}$ or cumecs.
$D=A x V$

