The potential role of small area estimation

Dr Paul Williamson Dept. of Geography & Planning

(1) What is Small Area Estimation?

Box F: Statistics possible using survey data

Area type	Average number of residents	1 year's data (800 threshold)	3 years' data (230 threshold)	5 years' data (130 threshold)
LA	160,000	Detailed cross- tabulations (c 200 cells)	Detailed cross- tabulations (c 500 cells)	Very detailed cross-tabulations (c 1000 cells)
MSOA	7,800	Some single variable statistics (c 10 cells)	Very simple cross-tabulations (c 30 cells)	Simple cross- tabulations (c 50 cells)
LSOA	1,600	Not available	Some single variable statistics (c 5 cells)	Some single variable statistics (c 10 cells)
OA	300	Not available	Not available	Not available

(2) Direct survey estimation

Barking & Dagenham

	LA
Pop. Attribute	n
Person	160000
Persons aged 16-74	113577
Males (aged 16-74)	54099
III	22638
Unemployed	5121
III Males	10729
Unemployed Males	3174
III Unemployed Males	<mark>452</mark>

Cell count < 800

(3) Other main SAE approaches

Proxies

Ecological regression

- Find relationship between AREA-level **Y** and **X**(s) for areas sampled in survey
- Assume applies to (non-sampled) areas, for which AREAlevel X is known
- E.g. ONS small area income estimates for MSOAs

Number of Related Children, Age 5-17 in Poverty Median CV of 1-year Estimates - 2005, 2006, 2007

Known problems with Ecological Regression

- Regression to the mean
- Point estimate
- Covariate dependent

Survey reweighting / calibration

Reweight survey data to fit local area constraints/margins...

...potentially weighting DOWN instead of up

Reweighting approaches:

- IPF / raking / Mostellerisation / Cross-Fratar / RAS etc../
- Generalised Regression (GREG)
- Integer linear programming solved using simplex or integer point methods
- etc...

Known problems with reweighting approaches:

- As per ecological regression...
- **BUT** provides distributional rather than point estimates

Record-level imputation

- Impute (estimate) missing data onto existing record level data
- E.g. Impute income onto Census records given known individual attributes such as age and occupation

Known problems:

- As per ecological regression, plus:
- Requires record-level data with 100% local area coverage
- **BUT** does provide distributional rather than point estimates

(4) Case study: mean income

(5) The limitations of SAE

Geographical variation in interactions

	Geography MORE important (Top 7) [AB] WEAKER THAN [AC]			Geography LESS important (Bottom 7) [AB] STRONGER THAN [AC]			
	Variable	No.		Variable	No.		
1=	Accommodation type	0	57.	Household headship	54		
1 =	Cars/Vans owned	0	56.	Sex	51		
1 =	Country of birth	0	55.	Comm. est. type	48		
1 =	Ethnic group	0	54.	Relationship to HRP ^a	45		
1=	Lowest floor	0	53.	$Generation \ indicator$	45		
1 =	Region of origin	0	52.	Age	43		
1 =	$Tenure \ of \ accommodation$	0	51.	Care provided hpw	42		

 $^{a}Household\ Reference\ Person$

For the perfect estimate, need to know margins AND interactions

FIGURE 4- Tabular and graphical displays of three possible marginal distributions (a), (b) and (c) with the same odds ratio = 4.

(6) SAE implications of Admin data + Survey approach

- Sample Survey data for ALL areas, not just some
 BUT
- Sampled local area interactions unreliable
- No census → few reliable covariates
- No census → validation of covariates?
- ONS/user SAE workload
- Unavoidable regression to the mean
- SAE reliability that varies by topic and geographic scale

Supplementary slides

Table 11.3: Proportion of tables where $\begin{array}{c} Uniform\\ [ABC] \end{array}$ outperforms regional (darker grey) and Supergroup sampling (lighter grey) - top and bottom five variables

		Sample sizes					
	Variable	0.1%	0.5%	1%	5%	10%	50%
Top 5							
	Comm.est. type						
	Status in comm. est.						
	Bath and WC						
	Hours of care						
Rottom	Students away						P
Jonom	Tenure						
	Sex of FRP				-	2	
	Economic act. of FRP					P	
	Marital status						
	Dependent children						

Cross-level regression

- Find relationship between *INDIVIDUAL-level* Y and X(s) in survey
- Assume applies to non-sampled areas, for which AREA-level X is known
- E.g. Estimates of local area 'Breadline poverty' and 'Fuel poverty' rates

Known problems:

- As per ecological regression plus..
- Commits Ecological fallacy
- Ecological regression performs better (when possible)

		Surrogate/Estimate			
		% NSSEC 1+2	Individual	Sub-group	Ecological
			Regression	mean	Regression
		[PNSSEC12]	[R_IND]	[LEEINC]	[ECOLOGICAL]
		% ranked in same decile as income			
Decile	1	71	66	74	80
[low income]	2	46	34	40	52
	3	32	40	35	43
	4	32	26	37	40
	5	25	34	39	37
	6	17	28	45	30
	7	26	28	43	31
	8	23	35	48	46
	9	28	51	57	60
[high income]	10	55	77	82	82
Overall		36	42	50	46
Within ± 1 decile		82	84	89	92