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5 Working with proportionality 
and ratio

There are many different kinds of relationship between variables. A very common 
relationship is when one variable is proportional to another and this section focuses on this 
kind of relationship. It also considers the related ideas of ratio, percentage and scale.

5.1 Meaning of proportional
A formal way of expressing proportionality would be that variable A is proportional to 
variable B when the values of the two variables are related by a constant multiplier. It is easier 
to understand the idea of proportionality through an example.

Banks count coins by weighing them. Suppose a coin has a mass of 5 g. Then two coins have 
a mass of 10 g. Doubling the number of coins doubles the mass. If there are 10 coins then 
they have 10 times the mass of one coin (i.e. 100 g). This is expressed by saying that the mass 
of coins is proportional to the number of coins.

A proportional relationship also works the other way round. The number of coins is 
proportional to the mass of the coins. A bag with 100 g of coins contains 10 coins. If you 
have double the mass (200 g) then you have double the number of coins (20). This is 
essentially what the bank is doing when it weighs coins to count them.

5.2 Proportionality and visual representation
Representing a proportional relationship as a graph can be a helpful way of exploring the idea 
further. The example here uses actual results of measuring the mass of a pile of 2p coins, with 
a reading being taken after each successive coin is added to the pile. The table of results is 
shown in Figure 5.1a and a line graph in Figure 5.1b (the values have been omitted from the 
graph for simplicity).

There are two key features of a graph showing proportionality between variables:

• the relationship is represented by a straight line

• the straight line passes through the origin.

Key words: proportional, directly proportional, line graph, origin, gradient, slope, 
horizontal axis, vertical axis, x-axis, y-axis, x-coordinate, y-coordinate, rate, 
constant, constant of proportionality, reciprocal, inverse, inversely proportional, ratio, 
percentage, scale, scale drawing, scale factor, linear dimension.
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Figure 5.1 Measuring the masses of 2p coins

(a)

Number of 2p coins Total mass (g)

0  0   

1  7.12

2 14.24

3 21.36

4 28.48

etc.
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Doubling the numbers of coins doubles the mass (e.g. 4 coins have double the mass of 
2 coins, and 6 coins have double the mass of 3 coins). Trebling the number of coins trebles 
the mass; halving the number of coins halves the mass. Figure 5.2 shows this idea represented 
on the graph. This is expressed by saying that the mass of the coins is proportional to the 
number of coins. (The term directly proportional is also used, but proportional is generally 
the preferred term in science. Using the term ‘directly proportional’ is helpful when it is 
being contrasted to ‘inversely proportional’, as explained later.)

Figure 5.2 Doubling one variable doubles the other
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Note that for a relationship to be proportional, the line on the graph needs both to be 
straight and to pass through origin. A curve that passes through the origin does not represent 
a proportional relationship. A straight line that does not pass through the origin represents 
a linear relationship but not a proportional one. A proportional relationship is a special 
case of a linear relationship. (For more details, see Section 9.11 Mathematical equations and 
relationships in science on page 99.)

Note also that proportionality is not the same as correlation – these two terms are sometimes 
confused with each other. They are both concerned with the relationship between two 
variables but correlation applies to a different type of data. (See Section 8.7 Relationships 
between variables: scatter graphs and correlation on page 83.)

5.3 Interpretation of gradient
Figure 5.3a shows a graph with two lines – now representing the results for measuring the 
masses of two stacks of coins, of 1p as well as 2p. The line for the 2p coins is steeper. This 
implies that the mass of the 2p stack rises more than the mass of the 1p stack when a coin is 
added. This is because each 2p coin has a greater mass than a 1p coin. The steepness of the 
line is called the gradient (the term slope is also used, but gradient is the preferred term).
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Figure 5.3 Finding the gradient of a line
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4 coins

21.36 

28.48 g

(A)

(B)

Figure 5.3b shows how the gradient of this line can be measured: it is the increase in the 
variable on the vertical axis or y-axis divided by the corresponding increase in the variable 
on the horizontal axis or x-axis. 

Since this is a straight line, it does not matter where this is done or how large the chosen 
interval is – the gradient is the same along the whole length of the line. For example, in 
Figure 5.3b, the gradient is measured in two different places along the line. The vertical 
measure is the difference between the two y-coordinates, and the horizontal measure is the 
difference between the two x-coordinates.

28.48 ggradient at (A)  7.12 g per coin
4 coins

21.36 ggradient at (B)  7.12 g per coin
3 coins

The gradient works out the same for both (A) and (B), and, in this example, is in fact the 
mass of one coin.

Note that the two small triangles drawn on this graph are intended only to illustrate that the 
gradient of this straight line is the same everywhere. When finding the gradient of a line on 
a real graph of data, the triangle used should be drawn as large as possible (see Section 9.12 
Graphs of quantities against time: gradients on page 103).

Another example that illustrates the meaning of a gradient is shown in Figure 5.4. The graph 
shows the change in the volume of water in a bath over time. At the start, the bath is empty. 
One line represents a fully open tap and the other a tap that is partially closed. 

Figure 5.4 A bath filling with water
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Since this is a change over time, the gradient represents a rate of change. In this case, the 
gradient is the flow rate of the water and is measured in litres/min. Both lines are straight and 
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pass through the origin – this is a proportional relationship. For each tap setting, doubling 
the time will double the volume since the rate (i.e. the gradient) is constant. The difference 
in the gradients of the two lines shows that the rate of change is greater when the tap is fully 
open than when it is partially closed. 

5.4 Proportionality and algebraic representation
A proportional relationship can be represented algebraically as:

variable A   variable B

e.g. mass of coins   number of coins

The symbol ‘ ’ stands for ‘is proportional to’. This relationship can be expressed as 
a formula:

variable A   constant  variable B

e.g. mass of coins mass of one coin  number of coins

The constant in the formula (in this case, ‘mass of one coin’) is equal to the gradient of the 
line on the graph. It is called the constant of proportionality. The formula has the general 
form of the mathematical equation:

y   kx

This represents a straight line passing through the origin with a gradient of k.

Any proportional relationship ‘works both ways’: so if ‘y is proportional to x’ then it is also 
true to say that ‘x is proportional to y’. In mathematics, this idea is expressed by saying that 
‘x and y are in direct proportion’.

A related kind of relationship is when one variable is proportional to the reciprocal or 
inverse of another variable, i.e.

1
y

x

This would be described by saying that y is inversely proportional to x: if x is doubled then y 
is halved. The general form of the equation would be:

constant
y

x

These ideas about directly proportional and indirectly proportional relationships are illustrated 
with some common examples from school science in the next section.

5.5 Proportional relationships in science
Some proportional relationships in science arise from definitions of quantities and others are 
derived from experimental observations. An example of a definition is:

massdensity  
volume
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This is not of the form y kx but it can be rearranged. (For details on rearranging formulae, 
see Chapter 9 Scientific models and mathematical equations on page 87.)

mass   density  volume

For objects made of the same material (i.e. constant density), the mass is proportional to the 
volume. In Figure 5.5a, the gradient for ‘iron’ is greater than for ‘aluminium’ because iron is a 
more dense material. Here, the constant of proportionality is the density of the material and 
this can be found by calculating the gradient of the straight line.

Figure 5.5 Proportional relationships

(a) The mass of a particular material is 

       proportional to its volume
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(b) The force exerted by a spring is proportional 

          to the extension
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An example of a relationship derived from experiment is Hooke’s Law. By experiment, it was 
found that the force exerted by a spring is proportional to the extension (within the elastic 
limit of the spring). The constant of proportionality is called the spring constant and it is 
a characteristic of a particular spring: the larger the spring constant, the stiffer the spring 
(Figure 5.5b).

force exerted   spring constant  extension

For each relationship in science, there tends to be a ‘conventional’ way of expressing the 
formula, and this may not always have the form y kx. The formula may need to be 
rearranged to express it in this way. In addition, what is considered to be the variable and 
what is considered to be the constant depends on the context. For example, if bottles of the 
same fixed volume are each filled with liquids of different densities, the mass of the liquid is 
proportional to the density and the volume would be the constant.

Figure 5.6 shows selected relationships, with the constants in the formulae underlined.

iron

aluminium

0
  0

spring A

spring B

0
  0

Figure 5.6 Examples of constants in proportional relationships

Relationship Formula (constant is underlined)

For an object made of a particular material:

mass   volume
mass = volume × density

For filling a fixed volume with different liquids:

mass   density
mass = volume × density

For a car travelling at constant speed along a motorway:

distance travelled   time
distance travelled = speed × time

For an object moved by a constant force:

work done   distance
work done = force × distance

For a resistor that obeys Ohm’s Law (i.e. a constant 

resistance):

potential difference   current

potential difference = current × resistance
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Note that saying that something is a constant does not mean that it is just a number with no 
units. In the algebraic equation y kx, the constant of proportionality k does represent just 
a number. However, in the examples in the above table, all of the constants are values with 
units. Thus, for the first example, mass (g) is proportional to volume (cm3), and the constant 
is density (g/cm3).

Rearranging the kinds of formulae shown in the table above can reveal relationships that are 
inversely proportional. For example:

wave speed   frequency  wavelength

For light in a particular medium, the wave speed is constant. Rearranging the formula brings 
out more clearly the relationship that frequency is inversely proportional to wavelength.

wave speedfrequency
wavelength

This means that if the wavelength is doubled then the frequency is halved. If it is trebled 
(or multiplied by any amount k) then the frequency is divided by three (or divided by the 
amount k).

For more details about directly proportional and inversely proportional relationships, see 
Section 9.11 Mathematical equations and relationships in science on page 99.

5.6 Ratios
A ratio is a comparison of two similar quantities and thus does not have units. For example, 
the mass of a 1p coin is 3.56 g and the mass of a 2p coin is 7.12 g. Thus the ratio of the mass 
of a 1p coin to the mass of a 2p coin is 3.56 : 7.12 (no units). This reduces to 1 : 2. The mass 
of a 2p coin is exactly twice that of a 1p coin and so, in this example, the ratio consists of 
integers (whole numbers).

Similarly, in aluminium oxide (Al2O3), the ratio of aluminium atoms to oxygen atoms is 2 : 3 
– again integers. It is also possible to express this as 1 : 1.5. Which of these ways of expressing 
a ratio is better is a matter of choice, depending on what is more useful for the context.

The ratio of the width of a sheet of A4 paper (210 mm) to the height (297 mm) is 210 : 297. 
This is a rather unwieldy ratio. In such cases, the ratio is expressed in the form ‘1 : x’. For A4 
paper, this would be 1 : 1.414. Using a ratio in this form makes comparisons with other ratios 
easier. For example, the ratio of the width to the height for A3 paper is the same (1 : 1.414) as 
for A4, showing that the two sizes of paper are similar shapes.

In some ratios, the two quantities being compared are also parts of a whole. For example, 
the ratio of aluminium atoms to oxygen atoms in Al2O3 is 2 : 3, and here it is meaningful to 
add the ‘2’ and ‘3’ together to give ‘5’, since this represents the total number of atoms in the 
formula. Thus, 2∕5 of the atoms in aluminium oxide are oxygen atoms (or 0.4 or 40%).

5.7 Proportional reasoning and ratios
The following is an example of a calculation that appears to be relatively straightforward: 
2 cm3 of aluminium has a mass of 5.4 g. What is the mass of 4 cm3? (Answer: 10.8 g)
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The simplest method of arriving at the answer is to reason that doubling the volume (from 
2 cm3 to 4 cm3) will double the mass (from 5.4 g to 10.8 g). Although this seems intuitive, it 
does in fact involve a rather subtle idea – in effect, comparing two ratios to find x:

volume 1 (cm3) : volume 2 (cm3)  mass 1 (g) : mass 2 (g)

 2 : 4   5.4 : x

Finding the value of x from these ratios involves proportional reasoning. While using these 
simple ratios might not be too difficult, it becomes conceptually harder when the mental 
manipulation of the values is more challenging. For example, 17 cm3 of aluminium has a 
mass of 91.8 g. What is the mass of 63 cm3?

In such a case, it may be easier to do this as a two-stage calculation, working out first the 
density of aluminium (i.e. the mass of 1 cm3). This value can then be used to calculate the 
mass of 63 cm3 of aluminium.

For further details about different calculation strategies, see Chapter 9 Scientific models and 
mathematical equations on page 87.

5.8 Percentages
A percentage is a kind of fraction that relates a part to a whole. Using a percentage is helpful 
when comparing one thing to another, because it can avoid unwieldy fractions or decimals.

For example, if a population of 200 rabbits (the whole) has 60 males (the part) then the 
proportion of males in the population can be expressed in any of the following ways:

60 3 30                                                   30% 
200 10 100

Thus, if the proportion of the part to the whole is expressed as a fraction with 100% as the 
denominator then the percentage is the numerator:

percentagepart
whole 100%

This equation can be rearranged so that any one of these values (part, whole or percentage) 
can be calculated from values for the other two (for details of rearranging equations, see 
Chapter 9 Scientific models and mathematical equations on page 87). For example, a 
percentage can be calculated from:

partpercentage  100%
whole

However, difficulties in calculations involving percentages can arise because of confusion over 
what the ‘part’ and the ‘whole’ represent. Avoiding the inappropriate use of formulae requires 
an understanding of what the percentage means in the context of the problem. For example, 
a percentage may apply to a part of an existing whole, or to an increase, or to a decrease.

The following questions are represented visually in Figure 5.7, which emphasises the meaning 
of the percentage in each case.

(a) A population of 200 rabbits has 30% males. How many males are there? (Answer: 
60 male rabbits)
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(b) A population of 200 rabbits increases by 30%. How big is the population after the 
change? (Answer: 260 rabbits)

(c) A population of 200 rabbits decreases by 30%. How big is the population after the 
change? (Answer: 140 rabbits)

Figure 5.7 Different meanings of a percentage

(a) (b) (c)

30% 60 rabbits 

100% 

200 rabbits 

30% 

260 rabbits 

100% 

200 rabbits 

30% 

140 rabbits 

100% 

200 rabbits 

Pupils can get a better feeling for the idea that a percentage represents a fraction (a 
part of a whole) if they are familiar with some common examples: 50% represents ½, 
25% represents ¼, 20% represents 1∕5, and so on.

Note that, although percentages can be effective for communicating values, they may not 
always be the most useful form for doing calculations. For example, saying that something 
has a 10% chance of happening is the same as saying that it has a probability of 0.1; the 
former communicates a clear message but the latter is more convenient for use in calculations 
on probabilities.

5.9 Scale drawings and images
To scale a quantity means to enlarge or reduce it by a given amount. A scale drawing 
of an object is one in which all of the dimensions of the original object are multiplied 
by a constant. This constant is called the scale factor (another example of a constant of 

proportionality). Pupils encounter scale drawings in biology (e.g. images of microscopic 
organisms) and in physics (e.g. representations of forces).

If the scale factor is greater than 1 then this produces an enlarged image (e.g. a drawing of a 
bacterium). If the value of the scale factor is between 0 and 1 then this produces a reduced 
image (e.g. a map). 

In the example shown in Figure 5.8, the original on the left has been reduced 3 times to 
produce the scale drawing on the right, i.e. the scale factor is ⅓. Every measurement is scaled 
by the same factor, so A2 is ⅓ times A1 , and B2 is ⅓ times B1.
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Figure 5.8 Original image and scale drawing

A1 

B1 

A2 

B2 

Another way of representing the scale factor would be to say that the scale of the drawing is 
1 : 3. Note that, in this ratio, the first number represents the dimension of the scale drawing 
and the second number represents the dimension of the original. Other examples of scales as 
ratios would be a model aeroplane with a scale of 1 : 72 and a map with a scale of 1 : 50 000.

For drawings and photographs of microscopic objects, where the image is enlarged, the scale 
factor is usually represented as a magnification. For example, ‘100 ’ may appear next to 
an image meaning that it is 100 times larger than the original (i.e. the scale factor is 100). 
Interpreting such images requires an understanding both of scaling and of the units used 
to describe the sizes of microscopic objects (see Section 2.6 Dealing with very large and very 
small values on page 20).

Note that the scale factor applies only to the linear dimensions. For the effects of scaling on 
areas and volumes, see Chapter 10 Mathematics and the real world on page 107.


