Student's t Test

Null Hypothesis

\qquad

Alternative Hypothesis \qquad

Enter your data in the table below (x_{1} and x_{2}) then square the individual observations to give $\mathrm{x}_{1}{ }^{2}$ and $\mathrm{x}_{2}{ }^{2}$ values.

Observation number	Site 1		Site 2	
	x_{1}	$\mathrm{x}_{1}{ }^{2}$	x_{2}	$\mathrm{x}_{2}{ }^{2}$
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
Σ (sum)				
	$\Sigma \mathrm{x}_{1}$	$\Sigma \mathrm{x}_{1}{ }^{2}$	$\Sigma \mathrm{x}_{2}$	$\Sigma x_{2}{ }^{2}$

$\Sigma=$ the sum of, so to calculate the $\Sigma \mathrm{x}_{1}, \Sigma \mathrm{x}_{1}{ }^{2}, \Sigma \mathrm{x}_{2}, \sum \mathrm{x}_{2}{ }^{2}$ values add up the values in each column.
Calculate the means of the x_{1} and x_{2} values to 3 decimal places:
$\bar{x}_{1}=\frac{\sum x_{1}}{n_{1}}=$
$\bar{x}_{2}=\frac{\sum x_{2}}{n_{2}}=$
Note that $\mathbf{n}=$ the number of observations and $\overline{\mathrm{x}}=$ the mean of the observations.

	$\Sigma x_{1}{ }^{2}$	Σx_{2}	$\Sigma x_{2}{ }^{2}$	$\overline{\mathrm{x}}_{1}$

Student's t Test

Calculate the Variances $\mathrm{s}_{1}{ }^{2}$ and $\mathrm{s}_{2}{ }^{2}$ to 3 decimal places in the boxes below.
$S_{1}{ }^{2}=\frac{\sum x_{1}{ }^{2}-\frac{\left(\sum x_{1}\right)^{2}}{n_{1}}}{n_{1}-1}=$
$S_{2}{ }^{2}=\frac{\sum x_{2}{ }^{2}-\frac{\left(\sum x_{2}\right)^{2}}{n_{2}}}{n_{2}-1}=\square=$

Calculateyour t value by using the equation below (to 3 decimal places)

$$
t=\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=
$$

For the top part of the last formula, the vertical line indicates that you take the positive value of the
difference between the means.

Calculate your combined degrees of freedom
Now look up you critical value of t on the table below

$$
n_{1}+n_{2}-2=
$$

Critical value of $t=$

Calculated value of $t=$
If your calculated t value is greater than or equal to your critical value of t, you can reject your null hypothesis and accept your alternative Hypothesis

We therefore Accept/Reject our Null Hypothesis
We therefore Accept/Reject our Alternative Hypothesis

Critical values at the 5\% significance level							
Combined degrees of freedom	Critical valueof t	Combined degrees of freedom	Critical valueof t	Combined degrees of freedom	Critical valueof t	Combined degrees of freedom	Critical valueof t
5	2.571	13	2.160	21	2.080	29	2.045
6	2.447	14	2.145	22	2.074	30	2.042
7	2.365	15	2.132	23	2.069	35	2.030
8	2.306	16	2.120	24	2.064	40	2.021
9	2.262	17	2.110	25	2.060	45	2.014
10	2.228	18	2.101	26	2.056	50	2.010
11	2.201	19	2.093	27	2.052	60	2.000
12	2.179	20	2.086	28	2.049	70	1.994

