Student's t Test

Null Hypothesis_____

Alternative Hypothesis______

Enter your data in the table below (x and x) then cause the individual observations to give x^2 and x^2 values	
Enter your data in the table below $(x_1 and x_2)$ then square the individual observations to give x_1 and x_2 values.	

Observation	Site 1	L	Site 2		
number	x ₁	x ₁ ²	X ₂	x ₂ ²	
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
Σ (sum)					
	Σx ₁	Σx1 ²	Σx ₂	Σx_2^2	

 Σ = the sum of, so to calculate the Σx_1 , Σx_1^2 , Σx_2 , Σx_2^2 values add up the values in each column.

Calculate the means of the x_1 and x_2 values to 3 decimal places:

Note that n = the number of observations and $\overline{x} =$ the mean of the observations.

Σx ₁	Σx1 ²	Σx ₂	Σx_2^2	\overline{x}_1	\overline{x}_2

Juniper Hall Field Centre

Student's t Test

Calculate the Variances s_1^2 and s_2^2 to 3 decimal places in the boxes below.

$$S_1^2 = \frac{\sum x_1^2 - \frac{(\sum x_1)^2}{n_1}}{n_1 - 1} = -----= =$$

$$S_2^2 = \frac{\sum x_2^2 - \frac{(\sum x_2)^2}{n_2}}{n_2 - 1} = ------= =$$

Calculateyour t value by using the equation below (to 3 decimal places)

t =
$$\frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$
 = _____ =

For the top part of the last formula, the vertical line indicates that you take the positive value of the

difference between the means.

Calculate your combined degrees of freedom $n_1 + n_2 - 2 =$

Now look up you critical value of t on the table below

Critical value of t =

Calculated value of t =

If your calculated t value is greater than or equal to your critical value of t, you can reject your null hypothesis and accept your alternative Hypothesis

We therefore Accept/Reject our Null Hypothesis We therefore Accept/Reject our Alternative Hypothesis

Critical values at the 5% significance level							
Combined	Critical	Combined	Critical	Combined	Critical	Combined	Critical
degrees of	valueof t	degrees of	valueof t	degrees of	valueof t	degrees of	valueof t
freedom		freedom		freedom		freedom	
5	2.571	13	2.160	21	2.080	29	2.045
6	2.447	14	2.145	22	2.074	30	2.042
7	2.365	15	2.132	23	2.069	35	2.030
8	2.306	16	2.120	24	2.064	40	2.021
9	2.262	17	2.110	25	2.060	45	2.014
10	2.228	18	2.101	26	2.056	50	2.010
11	2.201	19	2.093	27	2.052	60	2.000
12	2.179	20	2.086	28	2.049	70	1.994

Juniper Hall Field Centre