Spearman's Rank Correlation Coefficient

Null Hypothesis -

Alternative Hypothesis –

x	R	у	Obs (n)	Value (x)	Rank (R _x)	Value (y)	Rank (R _y)	$D=(R_{x}-R_{y})$	D ²
	1		1						
	2		2						
	3		3						
	4		4						
	5		5						
	6		6						
	7		7						
	8		8						
	9		9						
	10		10						
	11		11						
	12		12						
	13		13						
	14		14						
	15		15						
To ch	neck t	hat yo	our ranking	s are correct;	ED should equ	al zero.	Σ	E	

Spearman's coefficient of correlation is calculated by the following equation; $R_s = 1 - \left(\frac{6 \sum D^2}{n^3 - n}\right)$

 $\Sigma D^2 =$

n =

FSC BRINGING ENVIRONMENTAL UNDERSTANDING TO ALL

Juniper Hall Field Centre

Spearman's Rank Correlation Coefficient

NB You do not need to worry about the +/- value. It is there to tell you the nature of the relationship (positive or negative)

Table of Critical Values at the 95% Confidence level											
Number of		Number of									
pairs (n)		pairs (n)									
5	1.000	13	0.560								
6	0.886	14	0.539	R _{s =}							
7	0.786	15	0.521								
8	0.738	16	0.503	n =							
9	0.683	17	0.488								
10	0.649	18	0.472	Critical Value =							
11	0.618	19	0.460								
12	0.587	20	0.447								

Critical values sourced from: Moore. P. and Cobby. J., (1998) Introductory Statistics for Environmentalists, Prentice Hall, London. P244.

If R_s is greater than or equal to the critical value you can reject the Null hypothesis and accept the Alternative hypothesis

We can accept / reject the Null hypothesis

We can accept / reject the Alternative hypothesis

Juniper Hall Field Centre