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2 Doing calculations and 
representing values

The value of a quantity such as temperature or mass is represented by a number and a unit. 
This chapter focuses on the ways that units are used in calculations and on how values are 
represented. When pupils are using values in calculations, it is important that they are also 
thinking about the meaning of what they are calculating (see Section 9.5 The real-world 
meaning of a formula on page 93).

2.1 Calculations and units
Doing calculations on values involves paying attention to the manipulation of not just the 
numbers but the units as well. Addition and subtraction of values can only be done if they 
are expressed in the same units. For example, it may make sense to add the masses of two 
objects together (say 15 g and 20 g) to give a total mass (35 g). It would not make sense 
to add the mass (in g) of one object to the length (in m) of another. Mass and length are 
different kinds of quantity and so cannot be added together. However, it would be possible to 
add the values of a mass (in g) to another mass (in ounces) if they are converted to a common 
unit, since they are the same kind of quantity.

If some water at 60 °C is added to some water at 20 °C, it does not make sense to add the 
temperatures together, even though they are the same kind of quantity expressed in the same 
units. The masses of the water can be added together because mass is an extensive property 
(dependent on the size of the system), but temperature is an intensive property (independent 
of the size of the system) and cannot be added in this way. It would, however, make sense 
to calculate the temperature rise of an object (in °C) by subtracting an initial temperature 
(in °C) from a final temperature (in °C).

Multiplication and division may involve different units. For example, if a ball rolls 8 metres 
along the ground in 2 seconds, its average speed can be calculated. Here, the division has 
been done in two steps for emphasis – first the units and then the numbers.

distance travelled 8 m 8average speed  m/s 4 m/s
time taken 2 s 2

Key words: unit, quantity, compound measure, base unit, derived unit, variable, 
decimal, fraction, significant figures, round, integer, recurring decimal, decimal place, 
mean, arithmetic mean, index notation, index, power, exponent, square, cube, square 
root, cube root, reciprocal, unit prefix, standard form, standard index form, scientific 
notation, power of 10, order of magnitude, approximation, estimate.
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In mathematics, a quantity such as speed (e.g. in metres per second) is called a compound 

measure – it involves two measures of different types; in this case, distance and time. 
In science, the unit ‘metres per second’ or ‘m/s’ would be called a derived unit. In the 
International System of Units (SI), there are seven base units (metre, kilogram, second, 
ampere, kelvin, mole, candela) from which all other units are derived. Some derived units are 
expressed in terms of the base units (such as m/s); other derived units are given special names 
(e.g. the unit of force is derived from the base units but is given the name ‘newton’).

In science, it is good practice always to include units as part of the calculation, in order to 
keep track of what the numbers mean. An example of a multiplication involving a derived 
unit would be to calculate the mass of 10 cm3 of ethanol (density 0.79 g/cm3). 

3 3
 

 

mass volume density

10 cm 0.79 g/cm
7.9 g

Multiplying 10 by 0.79 gives 7.9, and multiplying cm3 by g/cm3 gives g (grams). Since this is 
an appropriate unit for mass, it provides a check that the calculation has been done correctly. 
It also acts as a check that a formula has been written down or rearranged correctly.

Note that not all quantities have units. Those that are derived from a ratio of the sizes of two 
quantities do not have units, for example relative atomic mass or refractive index.

Calculations involving chemical amounts (in moles) can often lead to confusion over the use 
of units. For example: What is the mass of 2 mol of water molecules? The relative molecular 
mass of water is 18, but it is not correct to say that the mass is 2  18 36 g, since the units 
are not consistent (the relative molecular mass has no units). It is the molar mass of water 
(18 g/mol) that is needed for the calculation.

mass chemical amount molar mass
2 mol 18 g/mol
36 g  

In post-16 physics, this kind of checking of consistency of units becomes even more 
important, and is known as dimensional analysis.

Note that, in mathematics, units in calculations are handled differently. In the above 
formulae, the variables (mass, volume, and so on) represent values with units, so these are 
part of the calculations. In mathematics, however, the variables in equations do not have 
units. For example, if the mass of an object is being calculated from an algebraic formula, one 
might represent the mass as m kg. Here, the variable ‘m’ represents just a number. If the result 
of the calculation is m 6 then the mass of the object is 6 kg. Teachers and pupils need to be 
aware of this difference in the way that units are handled in mathematics and science.

2.2 Fractions and decimals
In scientific calculations, intermediate and final values are usually expressed as decimals 
rather than fractions. In mathematics, pupils learn to add, subtract, multiply and divide 
fractions, though this is not much used in science.

One reason for this is that, when dealing with integers in mathematics, it makes sense to be 
able to manipulate the number to produce a result expressed as a fraction that also involves 
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integers (below left). This fraction is exact, whereas expressing this value as a decimal would, 
in this case, not be exact. Using numbers in this way also helps to develop an understanding 
of how algebraic expressions can be manipulated (below right). 

5 3 20 9 29
3 4 12 12  

a c ad bc
b d bd

This kind of algebraic manipulation of fractions would not be used in secondary science, 
however, when doing calculations with measured values. The values obtained from 
measurements are not exact integers, so the emphasis is on convenience of calculation. For a 
multi-step problem, it is generally easier to calculate intermediate values at each step, rather 
than to build up an expression, leaving the calculation to the last step.

2.3 Rounding and significant figures
The values used in a calculation may not all have the same number of significant figures. 
For a measured value, the number of significant figures is an indication of the precision of 
measurement. For a calculated value, the number of significant figures should reflect the 
precision of the values used in the calculation (see Section 1.2 Measurement, resolution and 
significant figures on page 9).

A rule of thumb for rounding
A useful rule of thumb is to round the result to the same number of significant figures as the 
measured value with the fewest significant figures. This means that the precision of the result 
is determined by the least precise value used in the calculation.

For example, to calculate the distance travelled in 2.73 seconds by a ball with velocity 1.4 m/s:

distance  velocity  time  1.4 m/s  2.73 s 3.822 m  3.8 m

The number obtained by multiplying 1.4  2.73 is 3.822, but this is then rounded to 
two significant figures (3.8). This is because the number in the calculation with the fewer 
significant figures is 1.4 (two significant figures). Rounding means replacing the calculated 
value with the nearest number with the appropriate number of significant figures; if the 
calculated value is halfway between two values with the appropriate number of significant 
figures then it is rounded up (e.g. 3.85 rounded to two significant figures is 3.9). Older 
pupils may also be introduced to the convention of writing ‘(to 2 s.f.)’ after the final value 
in the above calculation. This makes explicit how the result was rounded, and also avoids the 
implication that two unequal values are equal (i.e. 3.822 m  3.8 m). 

Distinguishing between measured values and integers
Integers need to be handled in a different way. For example, the height of an A4 sheet of 
paper is 297 mm. The height of 2 sheets placed end-to-end is 594 mm (2  297 mm). This 
is not rounded to 600 mm, since the value ‘2’ is not treated as having only one significant 
figure. It is an integer, and it is exactly 2 (in a sense, it has an infinite number of significant 
figures: 2.000 000 000 . . .). The ‘number of sheets’ is a ‘count’ and not a ‘measurement’.

Recurring decimals
Sometimes, in calculations involving division, the numerator divides exactly by 
the denominator (e.g. 18 / 2.4 7.5). If not, the result will be a recurring decimal 
(e.g. 26 / 2.4   10.833 333 33 . . .), even if the recurring pattern is not apparent because the 
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calculator display does not have sufficient digits to show this (e.g. 26 / 2.3 11.304 347 83 . . .). 
In mathematics, recurring decimals can be represented by placing dots over the digits; this 
convention is not needed in science, since such results are rounded to an appropriate number 
of significant figures.

The meaning of zeros in a value
It is important to pay attention to the way the zero digit is used to indicate the number of 
significant figures for measured values and for the results from calculations. For example, if 
a ball with a velocity 2.0 m/s travels for 4.32 seconds, the distance is found by multiplying 
these two values together. The calculated value is 8.64 m. The zero digit in ‘2.0 m/s’ means 
that this value has two significant figures. Rounding the calculated value to two significant 
figures gives 8.6 m.

Similarly, if a ball with a velocity 1.4 m/s travels for 2.86 seconds, multiplying these values 
together gives a result for the distance of 4.004 m. Rounding this to two significant figures 
gives 4.0 m. Writing this as 4 m would mean something different – it would have only one 
significant figure and would indicate less precision in the result.

The use of the zero digit in numbers that do not have a decimal point can be ambiguous. For 
example, while stating a distance as 5837 m implies that it has been measured or calculated 
to the nearest metre, it is not so clear what 6300 m means. Does it mean that it has only 
been measured to the nearest 100 m? (This would imply that the true value is nearer to 
6300 m than to 6200 m or 6400 m.) Or to the nearest 10 m? Or to the nearest 1 m? Without 
knowing the context, it is difficult to interpret what these values mean. One solution is to re-
express the value in a different unit. For example, in this case, if km were used, the difference 
between 6.300 km and 6.3 km would be clear. Another solution is to express the value using 
standard form (see Section 2.6 Dealing with very large and very small values on page 20).

Using judgement when adding values 
Judgement is necessary in using the rule of thumb when adding values, as the two examples 
below illustrate.

If the mass of a coin is 7.17 g then the mass of two such coins would be best expressed as 
14.34 g (and not rounded to 14.3 g, even though the original value only had three significant 
figures). In this case, it makes sense to keep the number of decimal places the same, since 
this reflects the resolution of the measuring instrument.

Another example where it makes sense to consider decimal places rather than the number 
of significant figures would be in finding the total mass of two objects with masses of 1.24 g 
and 141.5 g. These values suggest that the first object was measured using a higher resolution 
instrument (to the nearest 0.01 g) than the second object (to the nearest 0.1 g). When the two 
values are added together the result should be given to the nearest 0.1 g (the same as for the 
lower resolution instrument), and so the total mass is written as 142.7 g.

Using judgement when multiplying values 
Judgement is also needed in using the rule of thumb when multiplying values. Suppose 
you are calculating the masses of two blocks of aluminium, of volume 3.6 cm3 and 4.2 cm3. 
Multiplying by the density (2.7 g/cm3) gives 9.72 g and 11.34 g respectively. All of the starting 
values have two significant figures, so applying the rule of thumb for the first block means 
that the calculated value is rounded to 9.7 g. This seems sensible.
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However, applying the rule for the second block means rounding the value to 11 g, The only 
difference between the two calculations is that one gives a result a little under 10 g and the 
other a little over 10 g, though the first is rounded to the nearest 0.1 g and the second to the 
nearest 1 g. Here it may be more sensible to round the result for the second block to 11.3 g. 
Caution is needed to avoid over-rounding in such cases.

Thinking about the purposes of rounding
The above guidance applies to the final result of a calculation: in a multi-stage calculation, 
it is useful to retain an extra significant figure for the intermediate values that are calculated, 
in order to avoid rounding errors accumulating. On the other hand, rounding values to just 
one significant figure can be helpful if they are being used in a calculation to give an order of 
magnitude estimate.

Summary
There are no hard-and-fast rules for deciding on an appropriate number of significant figures. 
One difficulty is that this is linked to measurement uncertainty – a complex and subtle idea. 
However, that does not mean that ‘anything goes’, and the above discussion indicates some of 
the considerations for making sensible choices.

It is important that pupils should be able to identify the number of significant figures in a 
value, and to know how to round to a given number of significant figures. This is a matter 
of being correct or incorrect. Assessing how well they can round to appropriate numbers of 
significant figures involves finding out their reasons for doing so.

2.4 Calculating means
The mean of a set of values is the sum of the values divided by the number of values. (Strictly 
speaking, this is called the arithmetic mean, to distinguish it from other means such as the 
geometric mean.) The arithmetic mean is so widely used that, in science, it is usually referred 
to as just the ‘mean’. A common situation in school science for finding a mean is when taking 
repeated measurements in an experiment. The use of the term ‘average’ as an alternative to 
‘mean’ should be avoided, since ‘average’ can be ambiguous. (See Section 6.5 How big is a 
typical value? on page 55 for further details about means and averages.)

The same considerations about significant figures apply to the calculation of means. For 
example, using the ‘rule of thumb’ when calculating the mean of the three measured values 
7.5 cm, 7.8 cm and 7.6 cm gives a result of 7.6 cm. The sum of these numbers divided by 3 is 
7.633 333, and the final result is given to two significant figures, since the original values have 
two significant figures. Note that the value ‘3’ is an integer, and is exactly 3, so it is not treated 
as having one significant figure.

For a larger number of values, it may be justified for a mean to have a greater number of 
significant figures than the values of the data. For example, suppose you have 10 grapes and a 
balance reading to the nearest 1 g. The best way of finding the mean would be to put them all 
on the balance to get a total mass and divide by 10. But suppose instead that the mass of each 
grape is measured individually: 6 g, 5 g, 6 g, 7 g, 5 g, 5 g, 6 g, 6 g, 5 g and 6 g. The total is 57 g, 
and the mean would be 5.7 g. 

Here it may be better not to round to 6 g, but to leave it as 5.7 g. The full explanation for this 
involves thinking about the possible range for the true value. Since the balance reads to the 
nearest 1 g, each measured value could be higher or lower than the true value by up to 0.5 g 
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(e.g. a reading of 5 g means the true value is closer to this than to 4 g or 6 g, and lies between 
4.5 g and 5.5 g). It is possible, though unlikely, that all the random measurement effects were 
working in the same direction. If all 10 measurements were too high, their total could be 
higher than the true value of the total by a maximum of 5 g (i.e. 10  0.5 g); if they were all 
too low, their total could be lower than the true value by a maximum of 5 g. Thus the true 
value of the total lies between 52 g and 62 g. These extremes, however, are very unlikely. It is 
much more probable that there will be some cancelling out of these random effects, with 57 g 
being the best guess of the total mass.

Another example of finding a mean is given in Section 6.2 Variability and measurement 
uncertainty on page 51, where the calculated value is rounded to fewer significant figures 
than the measured values, because there is a good deal of variability in the measurements.

These examples illustrate the difficulty in 11–16 science of providing hard-and-fast rules or 
full justifications for how to round to appropriate numbers of significant figures; it is best left 
to judgements about what seems to make good sense.

2.5 Index notation and powers
Pupils are most likely to come across index notation for the first time in the context of 
expressing the square of a number, for example that 3  3 can be expressed as 32 (and spoken 
as ‘3 squared’). In this example, the number ‘2’ is called the index (or power or exponent), 
and, in speech, the expression can also be read as ‘3 to the power of 2’. This can be extended 
to the cube of a number (e.g. 33, ‘3 cubed’ or ‘3 to the power of 3’) and to higher indices 
(e.g. 34, 35, 36, etc.).

The use of indices also applies to units. For example, the area of a piece of paper of size 20 cm 
by 10 cm can be expressed in units of cm2.

area of paper  20 cm  10 cm  20  10  cm  cm  200 cm2

Note that the unit is better pronounced ‘square centimetres’ rather than ‘centimetres 
squared’. Saying ‘200 square centimetres’ is unambiguous and gives a more direct sense of the 
area: saying ‘200 centimetres squared’ could be interpreted as either 200 cm2 or (200 cm)2, 
i.e. as 40 000 cm2. Other common units used in science involving indices are m2 (‘square 
metres’), cm3 (‘cubic centimetres’), dm3 (‘cubic decimetres’) and m3 (‘cubic metres’).

The symbol √ is used for the square root of a number. For example, the square root of 9 can 
be written as √9 . This has two values, 3 and 3 (also written as  3), since both 32 and ( 3)2 
are equal to 9. Similarly, the symbol for a cube root is 3√ , so 3√27 3. (Note that 27 has 
only one cube root, since ( 3)3 is 27 and not 27). 

Roots may also be expressed using fractional indices, so the square root of 9 would be written 
as 9½, the cube root of 27 would be written as 27⅓, and so on. In science, the use of fractional 
indices may be encountered post-16, though it is not common at secondary level. The notion 
of a fractional index might seem odd at first: while 32 can be explained as meaning 3  3, 
what could 3½ mean? One way of thinking about this is to consider what happens to indices 
in multiplication. For example, 32  33 35 (3  3  3  3  3); the two indices are added 
together. In a similar way, 3½  3½ 31 (i.e. 3). So, 3½ is the number which when multiplied 
by itself gives 3; in other words, it is the square root of 3.

The reciprocal of a number can also be represented using index notation. For example, the 
reciprocal of 2 is ½ , which can also be written as 2−1. Similarly, the reciprocal of 22 (i.e. 
the reciprocal of 4, which is ¼) can be represented as 2−2. Again, negative indices are not 
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commonly used in secondary school science, except for powers of 10 as described below. 
Post-16 students would be expected to be familiar with the scientific convention of using 
negative indices in units, such as for velocity (m s−1) or density (g cm−3), but for younger 
pupils in science it is clearer if these are expressed as m/s or g/cm3.

Like fractional indices, negative indices can also seem strange. Here, thinking about 
what happens during division can help. For example, 100 000 1000 100 can be 
written as 105 103 102. Here the second index is subtracted from the first. Similarly, 
1000 100 000 1/100 can be written as 103 105 10−2.

2.6 Dealing with very large and very small values
The standard unit of length is the metre but lengths that are much larger or much smaller 
may be better expressed in different units using unit prefixes. For example:

• the thickness of a coin (0.0015 m) is more clearly expressed in millimetres (1.5 mm)

• the distance between two towns (135 000 m) is more clearly expressed in kilometres 
(135 km).

This avoids having too many zeros, either before or after the decimal point. Large numbers 
can be written by leaving a space (not a comma) between every three digits, which makes 
them easier to read, though still not as clear as changing units.

In the SI system, there are unit prefixes covering a wide range of sizes, creating a ‘ladder’ 
with each step differing from the next by a factor of 1000 (or 103). Figure 2 shows the most 
commonly used unit prefixes.

In addition, two other prefixes are centi- (a hundredth) and deci- (a tenth), though these are 
only likely to be met as the centimetre (1 cm 0.01 m) and the cubic decimetre (1 dm3

0.001 m3 1000 cm3).

Changing units can also help in comparing the sizes of values. For example, it is not easy to 
compare the masses of two objects expressed as 417 g and 1.24 kg. If they are both expressed 
in the same units, as 417 g and 1240 g, it may be easier to see that the second mass is about 
three times the first.

It is a common misconception that ‘longer’ numbers are bigger – the rule works for integers, 
but pupils may apply this inappropriately to any number. For example, when given the 
masses of two objects as 0.317 g and 0.52 g, pupils may think the first value is bigger (‘317’ is 
bigger than ‘52’). Converting the values to 317 mg and 520 mg makes the relative size clearer.

Figure 2.1 Prefixes for SI units

Unit 
prefix

Unit prefix 
symbol

Multiplying factor Example

Unit name Unit symbol

tera- T 1 000 000 000 000 or 10
12

terawatt TW

giga- G 1 000 000 000 or 10
9

gigawatt GW

mega- M 1 000 000 or 10
6

megawatt MW

kilo- k 1 000 or 10
3

kilowatt kW

– – 1 or 10
0

watt W

milli- m 0.001 or 10
−3

milliwatt mW

micro- μ 0.000 001 or 10
−6

microwatt μW

nano- n 0.000 000 001 or 10
−9

nanowatt nW
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Another way of expressing very large or small values is to use standard form (also referred to 
as standard index form or scientific notation). For example:

127 000 in standard form becomes 1.27  105

In standard form, the first number has just one digit to the left of the decimal point (i.e. it is 
greater than or equal to 1 and less than 10); this is multiplied by a power of 10.

One advantage of standard form is that it can make it easier to compare the orders of 

magnitude of very large or very small values. For example, 5.18  108 seconds is about 
100 times bigger than 5.91  106 seconds. Written in full, the eye would be distracted by 
all the zeros; unless they were arranged one above the other, it would be hard to make the 
comparison. However, in order to make comparisons using standard form, pupils do need to 
be confident in using the notation. If they are not then comparison may be easier with the 
the numbers written in full.

Another advantage of using standard form is that it always makes clear the number of 
significant figures. An example given earlier was the problem of knowing the number of 
significant figures in the value 6300 m, and how this can be made clear by changing the units. 
Expressing in standard form is another way of showing this; for example, as 6.3  103 m (two 
significant figures) or 6.300  103 m (four significant figures).

It can also be easier to do calculations using standard form; for example, in multiplying 
3.7  104 by 1.81  107. A calculator can be used to multiply 3.7 by 1.81 to give 6.697. 
Multiplying the powers of 10 can then be done mentally (104  107 1011) to give a final 
answer of 6.697  1011. Using the numbers written in full on a calculator could easily lead to 
mistakes being made. 

Multiplying 3.7  104 by 7  107 in the same way gives 25.9  1011 but this result is not in 
standard form, since 25.9 is greater than 10. When expressed in standard form, the result is 
2.59  1012.

Adding and subtracting numbers in standard form is trickier. The easiest way is to express 
them as ‘ordinary numbers’ and then carry out the calculation. The result can then be 
changed back to standard form.

Note that, when writing large numbers, it is now generally preferred in science to use a space 
rather than a comma as a ‘thousand separator’, i.e. to write 50 000 rather than 50,000. No 
separator is needed for numbers less than 10 000, i.e. 5000 rather than 5 000. The comma, 
however, is still the norm for everyday use in the UK. In many other countries, the comma 
has a different meaning: it is used as the ‘decimal mark’ instead of the dot used in the UK 
(e.g. 13,63 instead of 13.63).

2.7 Approximations and orders of magnitude
It is a useful habit when doing calculations to ask ‘Does this make sense?’ There are two 
things to consider – one is about the process of calculation and the other is about the ‘real-
world’ values produced.

In both science and mathematics, pupils should be encouraged to use approximations so that 
they can check, for example, that when they use a calculator the output is roughly what they 
expect. They can do this by rounding all of the numbers in a calculation to one significant 
figure. For example, if the calculation is to multiply 36.9 by 6.2 then this becomes 40  6
240. The actual result is 228.78, which is close to the estimate, but if they get 22 878 then 
they know that something has gone wrong. This number is the wrong order of magnitude.
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It is also important to think about whether a calculated value makes sense as an order of 
magnitude related to the real world; for example, a leaf of mass 3.97 kg, a temperature rise 
of water of 250 °C, or a car travelling down a motorway at 90 metres per hour. The first two 
values are far too large and the third is far too small. Being able to make such judgements 
requires pupils to have a sense of the magnitude of a range of units. Such an understanding 
can start early, for example with units of mass and length related to familiar objects, 
extending later to a wider range of values and to other quantities such as energy and power.


