Follow-up resource (2)

You must now swap information with the other groups so that you have data on all three routes. Fill in the tables below, and then the sentences underneath so that you can start to compare the routes and decide which would be the most suitable for the race.

Section 1: The traffic counts

	Route A	Route B	Route C
Average number of vehicles counted in 5 minutes			

The route with the most traffic appears to be route \qquad . The route with the least traffic would appear to be route \qquad . Therefore the route likely to cause the least disruption to traffic would be route \qquad .

Section 2: The questionnaires

Total number of "opposing" answers	Route A	Route B	Route C
Total number of "supportive" responses			

The route with the most opposition is route \qquad . The route with the least opposition and the most support is route \qquad . The route with the \qquad (most/least) opposition would be the most suitable.

Section 3: Environmental Quality survey

Criteria	Average score		
	Route A	Route B	Route C
Litter			
Noise			
View			
Pollution / smell			
Vandalism/damage/decay			
Hills			
Average score for all criteria			

The route with the \qquad (highest/lowest) average score would be the most
suitable. I think that this is route \qquad
because \qquad

