(Royal
Geographical	

Comparing Forest

Ecosystems

Comparing Forest Ecosystems

Objectives

To undertake a statistical analysis related to species abundance

To understand what the results of a statistical analysis mean for biodiversity

To be able to plan a method for measuring species abundance in the field

Royal
Geographical Society
with IBG

What would we define each of these terms?

Mean:

Mode:

Median:

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
and geographical learning

What would we define each of these terms?
Mean:
the sum of all the values in the data set divided by the number of values within the data set

Mode:

Median:

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
and geographical learning

What would we define each of these terms?
Mean:
the sum of all the values in the data set divided by the number of values within the data set

Mode: the value that occurs most frequently within a dataset

Median:

Foundation

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

What would we define each of these terms?
Mean:
the sum of all the values in the data set divided by the number of values within the data set

Mode:
the value that occurs most frequently within a dataset

Median:
the middle value when the data set is put in value order

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG

Choose either precipitation or temperature.
Work out the mean, median and mode for each of the two locations.

Are there any notable differences between the figures?

Which of the three methods do you favour?

Comparing Forest Ecosystems

You are going to compare the levels of biodiversity in a tropical rainforest and a temperate woodland.

Step One: Write a Hypothesis

Which ecosystem do you think will have the higher level of biodiversity? How much greater will biodiversity be in one ecosystem than the other?

Write your hypothesis as a single statement.

Step Two: Work out the Simpson's Diversity Index for an area of temperate woodland

The Simpson's Diversity Index is used to calculate the degree to which an area is considered diverse compared to another area. It relates the number of individuals of a kind to the total number of individuals in an area.

In this case, the two areas are the two habitats we are studying.

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=n / N$	$=(n / N)^{2}$
Field maple	807		
Alder	6		
Hazel	1856		
Hawthorn	82		
Blackthorn	40		
White willow	101		
Wayfaring tree	78		
Guelder Rose	84		
Oak	1036		
Dogwood	29		
Total (N)			

A tree survey was conducted in a set area of temperate woodland.

The following numbers of trees were recorded

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=n / N$	$=(n / N)^{2}$
Field maple	807		
Alder	6		
Hazel	1856		
Hawthorn	82		
Blackthorn	40		
White willow	101		
Wayfaring tree	78		
Guelder Rose	84		
Oak	1036		
Dogwood	29		
Total (N)			

Calculate the total number of trees found in the temperate woodland area. This is given the letter \boldsymbol{N}.

Write this number in the table.

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=n / N$	$=(n / N)^{2}$
Field maple	807		
Alder	6		
Hazel	1856		
Hawthorn	82		
Blackthorn	40		
White willow	101		
Wayfaring tree	78		
Guelder Rose	84		
Oak	1036		
Dogwood	29		
Total (N)	4119		

Calculate the total number of trees found in the temperate woodland area. This is given the letter \boldsymbol{N}.

Write this number in the table.

Comparing Forest Ecosystems

Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=\mathrm{n} / \mathrm{N}$	$=(\mathrm{n} / \mathrm{N})^{2}$				
Field maple	807	0.196					
Alder	6	0.001					
Hazel	1856	0.453					
Hawthorn	82	0.020					
Blackthorn	40						
White willow	101						
Wayfaring tree	78						
Guelder Rose	84						
Oak	1036						
Dogwood	29						
Total (N)					4119		

For each species of tree, divide the number of that tree (the abundance or \boldsymbol{n}) by the total number of trees (N .

Write these answers in the first empty column.

The first four have been done for you.

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=\mathrm{n} / \mathrm{N}$	$=(\mathrm{n} / \mathrm{N})^{2}$					
Field maple	807	0.196						
Alder	6	0.001						
Hazel	1856	0.453						
Hawthorn	82	0.020						
Blackthorn	40	0.010						
White willow	101	0.025						
Wayfaring tree	78	0.019						
Guelder Rose	84	0.020						
Oak	1036	0.252						
Dogwood	29	0.007						
Total (N)					4119	Total		

For each species of tree, divide the number of that tree (the abundance or \boldsymbol{n}) by the total number of trees (N .

Write these answers in the first empty column.

The first four have been done for you.

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=\mathrm{n} / \mathrm{N}$	$=(\mathrm{n} / \mathrm{N})^{2}$				
Field maple	807	0.196	0.0384				
Alder	6	0.001	0.0000				
Hazel	1856	0.453	0.2052				
Hawthorn	82	0.020	0.0004				
Blackthorn	40	0.010					
White willow	101	0.025					
Wayfaring tree	78	0.019					
Guelder Rose	84	0.020					
Oak	1036	0.252					
Dogwood	29	0.007					
Total (N)					4119	Total	

These answers should then be squared.

Write the answers in the last column. The first four have been done for you.

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=\mathrm{n} / \mathrm{N}$	$=(\mathrm{n} / \mathrm{N})^{2}$				
Field maple	807	0.196	0.0384				
Alder	6	0.001	0.0000				
Hazel	1856	0.453	0.2052				
Hawthorn	82	0.020	0.0004				
Blackthorn	40	0.010	0.0001				
White willow	101	0.025	0.0006				
Wayfaring tree	78	0.019	0.0004				
Guelder Rose	84	0.020	0.0004				
Oak	1036	0.252	0.0635				
Dogwood	29	0.007	0.0000				
Total (N)					4119	Total	

These answers should then be squared.

Write the answers in the last column. The first four have been done for you.

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=\mathrm{n} / \mathrm{N}$	$=(\mathrm{n} / \mathrm{N})^{2}$				
Field maple	807	0.196	0.0384				
Alder	6	0.001	0.0000				
Hazel	1856	0.453	0.2052				
Hawthorn	82	0.020	0.0004				
Blackthorn	40	0.010	0.0001				
White willow	101	0.025	0.0006				
Wayfaring tree	78	0.019	0.0004				
Guelder Rose	84	0.020	0.0004				
Oak	1036	0.252	0.0635				
Dogwood	29	0.007	0.0000				
Total (N)					4119	Total	

At the bottom of that last column there is space to write the total of these squared answers.

Calculate this and write it in.

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=\mathrm{n} / \mathrm{N}$	$=(\mathrm{n} / \mathrm{N})^{2}$				
Field maple	807	0.196	0.0384				
Alder	6	0.001	0.0000				
Hazel	1856	0.453	0.2052				
Hawthorn	82	0.020	0.0004				
Blackthorn	40	0.010	0.0001				
White willow	101	0.025	0.0006				
Wayfaring tree	78	0.019	0.0004				
Guelder Rose	84	0.020	0.0004				
Oak	1036	0.252	0.0635				
Dogwood	29	0.007	0.0000				
Total (N)					4119	Total	0.309

At the bottom of that last column there is space to write the total of these squared answers.

Calculate this and write it in.

Comparing Forest Ecosystems

Taking the sum of the squared answers away from 1 gives you a final value for the Simpson's Diversity Index (D).

$$
D=1-0.309
$$

\boldsymbol{D} should always be a value between 0 and 1 . The higher the value the more diverse the habitat.

Comparing Forest Ecosystems

Taking the sum of the squared answers away from 1 gives you a final value for the Simpson's Diversity Index (D).

$$
D=0.691
$$

\boldsymbol{D} should always be a value between 0 and 1 . The higher the value the more diverse the habitat.

Comparing Forest Ecosystems

Step Three: Compare the values for the Simpson's Diversity Index

Temperate woodland:
$\mathrm{D}=0.691$
Tropical rainforest:
$\mathrm{D}=0.901$

What does this tell you about the relative diversity of each habitat?
(Remember: The higher the value the more diverse the habitat.)

Comparing Forest Ecosystems

Step Four: Draw a conclusion based on your hypothesis

Look back at your predictive hypothesis - were you correct?

Now write a short conclusion based on your findings from calculating the Simpson's Diversity Index.

This study is not perfect. What else should be included to really measure biodiversity?

-

 Comparing Forest

 Comparing Forest Ecosystems

Royal
 Geographical Society
 with IBG

Advancing geography and geographical learning

Foundation

Royal
Geographical Society
with IBG

Simpson's Diversity Index

Comparing Forest Ecosystems

You are going to compare the levels of biodiversity in a tropical rainforest and a temperate woodland.

Step One: Write a Hypothesis

Which ecosystem do you think will have the higher level of biodiversity? How much greater will biodiversity be in one ecosystem than the other?

Write your hypothesis as a single statement.

Step Two: Work out the Simpson's Diversity Index for an area of temperate woodland

The Simpson's Diversity Index is used to calculate the degree to which an area is considered diverse compared to another area. It relates the number of individuals of a kind to the total number of individuals in an area.

In this case, the two areas are the two habitats we are studying.

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=n / N$	$=(n / N)^{2}$
Field maple	807		
Alder	6		
Hazel	1856		
Hawthorn	82		
Blackthorn	40		
White willow	101		
Wayfaring tree	78		
Guelder Rose	84		
Oak	1036		
Dogwood	29		
Total (N)			

A tree survey was conducted in a set area of temperate woodland.

The following numbers of trees were recorded

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=n / N$	$=(n / N)^{2}$
Field maple	807		
Alder	6		
Hazel	1856		
Hawthorn	82		
Blackthorn	40		
White willow	101		
Wayfaring tree	78		
Guelder Rose	84		
Oak	1036		
Dogwood	29		
Total (N)			

Calculate the total number of trees found in the temperate woodland area. This is given the letter \boldsymbol{N}.

Write this number in the table.

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=n / N$	$=(n / N)^{2}$
Field maple	807		
Alder	6		
Hazel	1856		
Hawthorn	82		
Blackthorn	40		
White willow	101		
Wayfaring tree	78		
Guelder Rose	84		
Oak	1036		
Dogwood	29		
Total (N)	4119		

Calculate the total number of trees found in the temperate woodland area. This is given the letter \boldsymbol{N}.

Write this number in the table.

Comparing Forest Ecosystems

Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=\mathrm{n} / \mathrm{N}$	$=(\mathrm{n} / \mathrm{N})^{2}$				
Field maple	807	0.196					
Alder	6	0.001					
Hazel	1856	0.453					
Hawthorn	82	0.020					
Blackthorn	40						
White willow	101						
Wayfaring tree	78						
Guelder Rose	84						
Oak	1036						
Dogwood	29						
Total (N)					4119		

For each species of tree, divide the number of that tree (the abundance or \boldsymbol{n}) by the total number of trees (N .

Write these answers in the first empty column.

The first four have been done for you.

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=\mathrm{n} / \mathrm{N}$	$=(\mathrm{n} / \mathrm{N})^{2}$					
Field maple	807	0.196						
Alder	6	0.001						
Hazel	1856	0.453						
Hawthorn	82	0.020						
Blackthorn	40	0.010						
White willow	101	0.025						
Wayfaring tree	78	0.019						
Guelder Rose	84	0.020						
Oak	1036	0.252						
Dogwood	29	0.007						
Total (N)					4119	Total		

For each species of tree, divide the number of that tree (the abundance or \boldsymbol{n}) by the total number of trees (N .

Write these answers in the first empty column.

The first four have been done for you.

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=\mathrm{n} / \mathrm{N}$	$=(\mathrm{n} / \mathrm{N})^{2}$				
Field maple	807	0.196	0.0384				
Alder	6	0.001	0.0000				
Hazel	1856	0.453	0.2052				
Hawthorn	82	0.020	0.0004				
Blackthorn	40	0.010					
White willow	101	0.025					
Wayfaring tree	78	0.019					
Guelder Rose	84	0.020					
Oak	1036	0.252					
Dogwood	29	0.007					
Total (N)					4119	Total	

These answers should then be squared.

Write the answers in the last column. The first four have been done for you.

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=\mathrm{n} / \mathrm{N}$	$=(\mathrm{n} / \mathrm{N})^{2}$				
Field maple	807	0.196	0.0384				
Alder	6	0.001	0.0000				
Hazel	1856	0.453	0.2052				
Hawthorn	82	0.020	0.0004				
Blackthorn	40	0.010	0.0001				
White willow	101	0.025	0.0006				
Wayfaring tree	78	0.019	0.0004				
Guelder Rose	84	0.020	0.0004				
Oak	1036	0.252	0.0635				
Dogwood	29	0.007	0.0000				
Total (N)					4119	Total	

These answers should then be squared.

Write the answers in the last column. The first four have been done for you.

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=\mathrm{n} / \mathrm{N}$	$=(\mathrm{n} / \mathrm{N})^{2}$				
Field maple	807	0.196	0.0384				
Alder	6	0.001	0.0000				
Hazel	1856	0.453	0.2052				
Hawthorn	82	0.020	0.0004				
Blackthorn	40	0.010	0.0001				
White willow	101	0.025	0.0006				
Wayfaring tree	78	0.019	0.0004				
Guelder Rose	84	0.020	0.0004				
Oak	1036	0.252	0.0635				
Dogwood	29	0.007	0.0000				
Total (N)					4119	Total	

At the bottom of that last column there is space to write the total of these squared answers.

Calculate this and write it in.

Comparing Forest Ecosystems

Royal
Geographical Society
with IBG
Advancing geography
and geographical learning

Species	Abundance (n)	$=\mathrm{n} / \mathrm{N}$	$=(\mathrm{n} / \mathrm{N})^{2}$				
Field maple	807	0.196	0.0384				
Alder	6	0.001	0.0000				
Hazel	1856	0.453	0.2052				
Hawthorn	82	0.020	0.0004				
Blackthorn	40	0.010	0.0001				
White willow	101	0.025	0.0006				
Wayfaring tree	78	0.019	0.0004				
Guelder Rose	84	0.020	0.0004				
Oak	1036	0.252	0.0635				
Dogwood	29	0.007	0.0000				
Total (N)					4119	Total	0.309

At the bottom of that last column there is space to write the total of these squared answers.

Calculate this and write it in.

Comparing Forest Ecosystems

Taking the sum of the squared answers away from 1 gives you a final value for the Simpson's Diversity Index (D).

$$
D=1-0.309
$$

\boldsymbol{D} should always be a value between 0 and 1 . The higher the value the more diverse the habitat.

Comparing Forest Ecosystems

Taking the sum of the squared answers away from 1 gives you a final value for the Simpson's Diversity Index (D).

$$
D=0.691
$$

\boldsymbol{D} should always be a value between 0 and 1 . The higher the value the more diverse the habitat.

Comparing Forest Ecosystems

Step Three: Compare the values for the Simpson's Diversity Index

Temperate woodland:
$\mathrm{D}=0.691$
Tropical rainforest:
$\mathrm{D}=0.901$

What does this tell you about the relative diversity of each habitat?
(Remember: The higher the value the more diverse the habitat.)

Comparing Forest Ecosystems

Step Four: Draw a conclusion based on your hypothesis

Look back at your predictive hypothesis - were you correct?

Now write a short conclusion based on your findings from calculating the Simpson's Diversity Index.

This study is not perfect. What else should be included to really measure biodiversity?

