

# Beyond 2011 A local authority perspective

Mark Fransham Oxford City Council

&

co-chair of Local Authorities' liaison with central government on population statistics

(CLIP population)



## Weaknesses of current system

- Unreliable inter-Censal population estimates in some areas with large migration flows
- Census comes once every ten years at times, we are using very old statistics as our best picture of the situation today
- But its strength is the level of detail it provides

## **Concerns about admin + survey system**

- Reliability of administrative data in high turnover areas
- Plans for workplace-based statistics and origin-destination commuting statistics
- No Output Area or other small number data for characteristics data
- Much reduced precision in other characteristics outputs



## **Output Area and Parish data**

- Output Area and Parish data Of greatest concern to rural areas which have smaller communities than urban areas
- Parishes are a small but integral part of local government, which use Census statistics in parish planning and neighbourhood plans

**RIGHT: Suffolk** parishes which are smaller than LSOA

i.e. are likely not to have population characteristics data under admin solution



COUNCIL



- Precision is important, because we want to be able to measure difference (between groups and areas) and change (over time)
- Illustration using a practical example: identifying houses in multiple occupation, or 'other household types' in the 2011 Census
  - comparison of Census 2011 results with simulated survey results constructed using ONS confidence interval calculator

## What's the trend?

#### **Census outputs, LA**

Household type: 'other' households in Oxford, 2001 & 2011 Censuses

# Simulated survey outputs (3 yr sample, LA)



No observable change from 1 year sample

Household type: 'other' households in Oxford (simulated survey outputs)



### Where are the 'other' households?

#### **Census outputs (LSOA)**

#### Simulated survey outputs (5 yr sample, LSOA)





### Where has the change occurred?

**Census outputs (LSOA)** 



# Simulated survey outputs (LSOA) 5-yr samples, 1999-2003 – 2009-2013



## Who is living in 'other' households?



#### **Census outputs**

- Output area detail
- Age and sex
- Tenure
- Number of bedrooms
- Overcrowding
- Ethnic group
- Household size
- Etc...

#### Simulated survey outputs

- Not yet investigated in detail, but lower level of detail compared to Census:
- No Output Area detail, and
- small numbers will mean
  - suppression of crosstabs probably at LA, certainly sub-LA level
  - Reduced ability to measure change in subgroups

## In summary:



- Simulated survey outputs delivered identification of LA-level trend<sup>\*</sup> three years earlier than 2011 Census
- But:
  - Reduced ability to identify within-LA differences
  - Much reduced ability to identify small area trends, despite increased frequency of small area outputs
  - Loss of geographic and demographic detail

#### Which information would we prefer?

- In order to plan effectively, LAs need to know where people and households are, who they are, and how things are changing
- In <u>this</u> case, I think we need the geographic detail more than the marginal benefit of increased frequency
- But we need to evaluate other examples too

### What LAs should consider in their response

- Do you need Output Area and other small number data?
- Will the more frequent data outputs be useful with a reduced level of precision?
- Is the increase in frequency at LA level worthwhile if:
  - you have reduced understanding of where and to whom things are happening?
  - it becomes difficult to measure change in small areas within the LA?
- Plans for workplace-based statistics and origin-destination commuting statistics are currently unclear
- If the loss of this information matters: tell ONS why!

